For almost all plotting from python I use
matplotlib, but recently I noticed an interesting alternative called
guiqwt. Guiqwt seems to be faster and more tuned towards using plots in a UI environment. In the youtube movie
Introduction to Wolfram Language a nice demo is shown where a gui is assigned automatically to a function with sliders for the function parameters so the user can easily explore the function behavior. If you often work with empirical functions to reproduce certain experimentally observed trends it can be very nice to have such a quick visualization of the influence of the chosen function parameters. This gave me the idea to try to make a generic function plotter with python/guiqwt where the user can supply the function by typing a string from which the parameters are then automatically recognized and assigned a slider so the user can explore the function behavior. This turned out to be a little more involved than anticipated but the result is acceptable:
To make life a little easier the user has to write function parameters (and independent variables) starting with an underscore. This saves the effort of trying to recognize all possible mathematical functions from the string (e.g. no searching from tan, sin, exp, sqrt etc. required) which would have been nicer of course. All in all the code is about 400 lines (see below), a bit more than expected. But it was a nice exercise to get familiar with
PyQt and guiqwt.
from guidata.qt.QtGui import QWidget, QVBoxLayout, QHBoxLayout,QPalette
from guidata.qt.QtGui import QPushButton,QSlider,QGridLayout,QLabel,QFont
from guidata.qt.QtGui import QCheckBox,QLineEdit,QComboBox,QSizePolicy
from guidata.qt.QtCore import SIGNAL
from guidata.qt.QtGui import QApplication
from guidata.qt.QtCore import Qt
from guiqwt.plot import CurveWidget
from guiqwt.builder import make
from guidata.configtools import get_icon
import numpy
from numpy import *
from functools import partial
class TFunctionParameter:
"""
This class defines the properties of a function parameter.
The properties are:
-Name
-Value
-Minimum allowed allowed parameter value
-Maximum allowed allowed parameter value
"""
def __init__(self,name,value,minValue=None,maxValue=None,scientific=False):
"""
Constructor for the TFunctionParameter class
Arguments:
name: name of the parameter (this is the string you use in the function definition!)
value: (initial) value of the parameter
minValue: if provided the minimum allowed value of this parameter. Otherwise default 0.1*value
maxValue: if provided the maximum allowed value of this parameter. Otherwise default 10.0*value
"""
self._name=name
self._v=value
self._scientific=scientific
if(minValue):
self._minV=minValue
else:
self._minV=0.1*self._v
if(maxValue):
self._maxV=maxValue
else:
self._maxV=10.0*self._v
def Scientific(self):
return(self._scientific)
def v(self):
return(self._v)
def setValue(self,v):
if(v<self._minV):
self._v=self._minV
elif(v>self._maxV):
self._v=self._maxV
else:
self._v=v
def getValue(self):
return(self._v)
def minValue(self):
return(self._minV)
def maxValue(self):
return(self._maxV)
def name(self):
return(self._name)
def checkV(self):
"""
Checks if parameter value still between min-max. If not
value is adjusted to fall in allowed range.
"""
if(self._v>self._minV):
self._v=self._maxV
elif(self._v<self._minV):
self._v=self._minV
def setMinValue(self,minV):
"""
Adjust the minimum allowed value for this parameter. The parameter
value is adjusted to fall in the new range. This function returns
the current (possibly adjusted) parameter value.
The new min value is not allowed to be bigger than the current
maximum allowed value.
"""
if(minV>self._maxV):
self._minV=self._maxV
else:
self._minV=minV
self.checkV()
return(self._v)
def setMaxValue(self,maxV):
"""
Adjust the maximum allowed value for this parameter. The parameter
value is adjusted to fall in the new range. This function returns
the current (possibly adjusted) parameter value.
The new max value is not allowed to be smaller than the current
minium allowed value
"""
if(maxV<self._minV):
self._maxV=self._minV
else:
self._maxV=maxV
self.checkV()
return(self._v)
def setMinAndMAxValues(self,minV,maxV):
"""
Adjust the minimum and maximum allowed values simulataneously.
Use this function to specify a completely new range for this
parameter
This function returns
the current (possibly adjusted) parameter value.
"""
self._minV=minV
self._maxV=maxV
self.checkV()
return(self._v)
class TFunctionUI(QWidget):
"""
The idea of this class is to provide an automatic user interface
to adjust all function parameter values and see the effect on the
function behaviour.
"""
def __init__(self,parent):
"""Constructor of the TFunctionUI class"""
self._parameterDict={}
QWidget.__init__(self, parent)
self.setMinimumSize(520, 400)
self.x = [0,1]
self.xvec=[0,1]
self.y = [0,1]
self.func = self.calc
self.title="f"
self.autoScale=True
#---guiqwt curve item attribute:
self.curve_item = None
#---
def calc(self):
"""
Based on function string calculate function
"""
xpar=self._parameterDict[self._xName]
xvec=numpy.r_[xpar.minValue():xpar.maxValue():-250j]
evalString=self.funcString[:]
for par in self.paramLst:
if(par==self._xName):
evalString=evalString.replace(par,"xvec")
else:
evalString=evalString.replace(par,"self._parameterDict['%s'].v()"%(par))
self.xvec=xvec
f=eval(evalString)
return(f)
def addParameter(self,p):
"""
Add a parameter.
Arguments:
p - The parameter to add. Must be an instance of TFunctionParameter.
"""
self._parameterDict[p.name()]=p
def defineX(self,x):
"""
Define the value on the x-axis.
Arguments:
x - the parameter to plot on x-axis. Must be an a string and part of the parameter list
"""
self._xName=x
def parValue(self,p):
"""
Returns the current value for parameter p
"""
return(self._parameterDict[p.name()].v())
def getParametersAndFunction(self,fs):
"""
Extract the parameters from the function string
fs: function string
"""
math_symbols=['<','>','=','*','+','-','/','(',')']
#Process string
#find first occurence of _ to indicate a parameter
NParams=fs.count('_')
self.paramLst=[] #Stores parameter names in the order as they appear in the equation
self.funcString=fs[:]
cntParams=0
#~ print self.funcString
for np in range(NParams):
index=fs.index('_')
#Now look for first math symbol to signify end of parameter name
i=index+1
while(i<len(fs) and (fs[i] not in math_symbols )):
i+=1
#Now the parameter name is from index upto i-1
parName=fs[index:min(i,len(fs))] #include the underscore
fs=fs[i:]
if(parName in self.paramLst):
continue #Do not count same parameter double
p=TFunctionParameter(parName,1.0,-5.0,5.0,scientific=False)
self.paramLst.append(parName)
self.addParameter(p)
def slideChange(self,key):
"""
Process slide change. Key indicates to which parameter
the slide belongs to
"""
v=self.slideDict[key].value()
float_v=v/1000.0
p=self._parameterDict[key]
p_value=p.minValue()+(p.maxValue()-p.minValue())*float_v
p.setValue(p_value)
if(p.Scientific()):
self.valDict[key].setText("%5.4e"%(p_value))
else:
self.valDict[key].setText("%6.3f"%(p_value))
self.process_data()
def toggleAutoScale(self,v):
self.autoScale=self.autoScaleCheckBox.checkState()
self.process_data()
def parMinChanged(self,key):
"""
Process a change of a minimum parameter value
"""
p=self._parameterDict[key]
p.setMinValue(self.minLEDict[key].text().toFloat()[0])
self.process_data()
def parMaxChanged(self,key):
"""
Process a change of a minimum parameter value
"""
p=self._parameterDict[key]
p.setMaxValue(self.maxLEDict[key].text().toFloat()[0])
self.process_data()
def xAxisChange(self,key):
"""
The user has selected a different x-axis
"""
#Active slider of current x-axis
self.slideDict[self._xName].setEnabled(True)
self._xName=str(key)
self.slideDict[self._xName].setEnabled(False)
self.plot.set_axis_title(self.plot.X_BOTTOM,self._xName)
self.process_data()
def extend_widget(self):
func_string=str(self.eqLE.text())
self.getParametersAndFunction(func_string)
self.eqLE.setEnabled(False)
self.processButton.setEnabled(False)
self.title="f=%s"%(func_string)
#Check if _x in parameter list
if("_x" in self._parameterDict.keys()):
self.defineX("_x") #Make _x the x-axis parameter
else:
self.defineX(self._parameterDict.keys()[0]) #Make the first parameter the x-axis
#Loop over function parameters and setup sliders
cnt=0
glayout=QGridLayout()
self.slideDict={} #to store parameter value sliders
self.minLEDict={} #to store minimum parameter value LineEdits
self.maxLEDict={} #to store maximum parameter value LineEdits
self.valDict={} #to store labels containing parameter values
self.xCBDict={} #To store x-axis selection checkbox
palette = QPalette()
palette.setColor(QPalette.Foreground,Qt.blue)
key_lst=self._parameterDict.keys()
key_lst.sort()
self.xCombo=QComboBox()
sizePol=QSizePolicy(QSizePolicy.Preferred,QSizePolicy.Preferred)
for key in key_lst:
self.xCombo.addItem(key)
p=self._parameterDict[key]
nameLabel=QLabel(p.name()+': ')
glayout.addWidget(nameLabel,cnt,0)
if(p.Scientific()):
valLabel=QLabel("%5.4e"%(p.v()))
minLE=QLineEdit("%5.4e"%(p.minValue()))
#~ minLE.sizeHint(10)
maxLE=QLineEdit("%5.4e"%(p.maxValue()))
else:
valLabel=QLabel("%6.3f"%(p.v()))
minLE=QLineEdit("%6.3f"%(p.minValue()))
#~ minLE.sizeHint(10)
maxLE=QLineEdit("%6.3f"%(p.maxValue()))
self.connect(minLE,SIGNAL('editingFinished ()'),\
partial(self.parMinChanged,key))
self.connect(maxLE,SIGNAL('editingFinished ()'),\
partial(self.parMaxChanged,key))
minLE.setSizePolicy(sizePol)
maxLE.setSizePolicy(sizePol)
self.minLEDict[key]=minLE
self.maxLEDict[key]=maxLE
valLabel.setPalette(palette)
self.valDict[key]=valLabel
glayout.addWidget(valLabel,cnt,1)
glayout.addWidget(minLE,cnt,2)
glayout.addWidget(maxLE,cnt,4)
sld = QSlider(Qt.Horizontal)
sld.setRange(0,1000)
s_value=int(1000*(p.v()-p.minValue())/(p.maxValue()-p.minValue()))
sld.setValue(s_value)
if(p.name()==self._xName):
sld.setEnabled(False)
self.connect(sld, SIGNAL('valueChanged(int)'),\
partial(self.slideChange,key))
self.slideDict[key]=sld
#Connect this slider to the parameter
glayout.addWidget(sld,cnt,3)
cnt+=1
self.vlayout.addLayout(glayout)
hl=QHBoxLayout()
self.xCombo.setCurrentIndex(self.xCombo.findText(self._xName))
self.autoScaleCheckBox=QCheckBox("Auto scale y-axis")
self.autoScaleCheckBox.setCheckState(self.autoScale)
self.autoScaleCheckBox.setTristate(False)
self.connect(self.autoScaleCheckBox,SIGNAL('stateChanged(int)'),\
self.toggleAutoScale)
hl.addWidget(self.autoScaleCheckBox)
hl2=QHBoxLayout()
xlab=QLabel("X-axis: ")
hl2.addStretch()
hl2.addWidget(xlab)
hl2.addWidget(self.xCombo)
hl.addLayout(hl2)
self.connect(self.xCombo,SIGNAL('currentIndexChanged(QString)'),\
self.xAxisChange)
self.vlayout.addLayout(hl)
self.setLayout(self.vlayout)
self.plot.set_axis_title(self.plot.Y_LEFT,self.title)
self.plot.set_axis_title(self.plot.X_BOTTOM,self._xName)
self.process_data()
def setup_widget(self, title):
#---Create the plot widget:
self.curvewidget = CurveWidget(self)
self.curvewidget.register_all_curve_tools()
self.curve_item = make.curve([], [], color='b')
self.curvewidget.plot.add_item(self.curve_item)
self.curvewidget.plot.set_antialiasing(True)
self.plot = self.curvewidget.get_plot()
font = QFont()
font.setPointSize( 16 )
self.plot.set_axis_font("left", font)
self.plot.set_axis_font("bottom", font)
#---
self.eqLE=QLineEdit()
self.eqLE.setPlaceholderText(\
"e.g. sin(_x**2/_a+_y**2/_b), just start parameters with one underscore!")
self.eqLE.selectAll()
self.processButton=QPushButton("Process")
self.connect(self.processButton,SIGNAL('clicked()'),\
self.extend_widget)
hlayout=QHBoxLayout()
hlayout.addWidget(self.eqLE)
hlayout.addWidget(self.processButton)
self.vlayout = QVBoxLayout()
self.vlayout.addWidget(self.curvewidget)
self.vlayout.addLayout(hlayout)
self.setLayout(self.vlayout)
def process_data(self):
self.y = self.calc()
if(self.autoScale):
self.plot.set_axis_limits(self.plot.Y_LEFT,min(self.y),max(self.y))
self.update_curve()
def update_curve(self):
#---Update curve
self.curve_item.set_data(self.xvec, self.y)
self.curve_item.plot().replot()
class TestWindow(QWidget):
def __init__(self):
QWidget.__init__(self)
self.setWindowTitle("FunctionPlotter(guiqwt)")
self.setWindowIcon(get_icon('guiqwt.svg'))
hlayout = QHBoxLayout()
self.setLayout(hlayout)
def add_plot(self, title):
self.widget = TFunctionUI(self)
self.widget.setup_widget(title)
self.layout().addWidget(self.widget)
if __name__ == "__main__":
app = QApplication([])
win = TestWindow()
win.add_plot("")
win.show()
app.exec_()